JSXGraph logo
JSXGraph
JSXGraph share

Share

Extended mean value theorem
QR code
<iframe 
    src="https://www.jsxgraph.org/share/iframe/extended-mean-value-theorem" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Extended mean value theorem" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 3 / 2; width: 100%;" data-ar="3 / 2"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        boundingbox: [-5, 10, 7, -6],
        axis: true
    });
    
    // Some initial points
    var p = [];
    p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
    p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
    p.push(board.create('point', [1, 4], {size: 2, name: ''}));
    p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));
    
    // Lagrange interpolation through the points
    var fg = JXG.Math.Numerics.Neville(p);
    var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});
    
    // Line 
    var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});
    
    // Derivatives of the curve
    var df = JXG.Math.Numerics.D(fg[0]);
    var dg = JXG.Math.Numerics.D(fg[1]);
    
    // Usually, the extended mean value theorem is formulated as
    // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
    // We can avoid division by zero with the following formulation:
    var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
    
    // Construct the point C(ξ)
    var r = board.create('glider', [
        () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
        () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
        graph
    ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});
    
    // Tangent to C through C(ξ)
    board.create('tangent', [r], {strokeColor: '#ff0000'});
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6],
    axis: true
});

// Some initial points
var p = [];
p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
p.push(board.create('point', [1, 4], {size: 2, name: ''}));
p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));

// Lagrange interpolation through the points
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});

// Line 
var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});

// Derivatives of the curve
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);

// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());

// Construct the point C(ξ)
var r = board.create('glider', [
    () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    graph
], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});

// Tangent to C through C(ξ)
board.create('tangent', [r], {strokeColor: '#ff0000'});
<jsxgraph width="100%" aspect-ratio="3 / 2" title="Extended mean value theorem" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution 4.0 International License.
   https://creativecommons.org/licenses/by/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   const board = JXG.JSXGraph.initBoard(BOARDID, {
       boundingbox: [-5, 10, 7, -6],
       axis: true
   });
   
   // Some initial points
   var p = [];
   p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
   p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
   p.push(board.create('point', [1, 4], {size: 2, name: ''}));
   p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));
   
   // Lagrange interpolation through the points
   var fg = JXG.Math.Numerics.Neville(p);
   var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});
   
   // Line 
   var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});
   
   // Derivatives of the curve
   var df = JXG.Math.Numerics.D(fg[0]);
   var dg = JXG.Math.Numerics.D(fg[1]);
   
   // Usually, the extended mean value theorem is formulated as
   // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
   // We can avoid division by zero with the following formulation:
   var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
   
   // Construct the point C(ξ)
   var r = board.create('glider', [
       () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
       () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
       graph
   ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});
   
   // Tangent to C through C(ξ)
   board.create('tangent', [r], {strokeColor: '#ff0000'});
</jsxgraph>

Extended mean value theorem

The*'extended mean value theorem* (also called *Cauchy's mean value theorem*) is usually formulated as: Let $$ f, g: [a,b] \to \mathbb{R}$$ be continuous functions that are differentiable in the open interval $(a,b)$. If $g'(x)\neq 0$ for all $x\in(a,b)$, then there exists a value $\xi \in (a,b)$ such that $$ \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}. $$ __Remark:__ It seems to be easier to state the extended mean value theorem in the following form: Let $$f, g: [a,b] \to \mathbb{R}$$ be continuous functions that are differentiable in the open interval $(a,b)$. Then there exists a value $\xi \in (a,b)$ such that $$ f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(a)). $$ This second formulation avoids the need that $g'(x)\neq 0$ for all $x\in(a,b)$ and is therefore much easier to handle numerically. The proof is similar, just use the function $$ h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) $$ and apply *Rolle's theorem*. __Visualization:__ The extended mean value theorem says that given the curve $$C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t))$$ with the above prerequisites for $f$ and $g$, there exists a $\xi$ such that the tangent to the curve in the point $C(\xi)$ is parallel to the line through $C(a)$ and $C(b)$.
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6],
    axis: true
});

// Some initial points
var p = [];
p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
p.push(board.create('point', [1, 4], {size: 2, name: ''}));
p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));

// Lagrange interpolation through the points
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});

// Line 
var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});

// Derivatives of the curve
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);

// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());

// Construct the point C(ξ)
var r = board.create('glider', [
    () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    graph
], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});

// Tangent to C through C(ξ)
board.create('tangent', [r], {strokeColor: '#ff0000'});

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.