Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Extended mean value theorem
Show plain example
QR code
<iframe 
    src="https://www.jsxgraph.org/share/iframe/extended-mean-value-theorem" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Extended mean value theorem" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 3 / 2; width: 100%;" data-ar="3 / 2"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        boundingbox: [-5, 10, 7, -6],
        axis: true
    });
    
    // Some initial points
    var p = [];
    p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
    p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
    p.push(board.create('point', [1, 4], {size: 2, name: ''}));
    p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));
    
    // Lagrange interpolation through the points
    var fg = JXG.Math.Numerics.Neville(p);
    var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});
    
    // Line 
    var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});
    
    // Derivatives of the curve
    var df = JXG.Math.Numerics.D(fg[0]);
    var dg = JXG.Math.Numerics.D(fg[1]);
    
    // Usually, the extended mean value theorem is formulated as
    // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
    // We can avoid division by zero with the following formulation:
    var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
    
    // Construct the point C(ξ)
    var r = board.create('glider', [
        () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
        () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
        graph
    ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});
    
    // Tangent to C through C(ξ)
    board.create('tangent', [r], {strokeColor: '#ff0000'});
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6],
    axis: true
});

// Some initial points
var p = [];
p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
p.push(board.create('point', [1, 4], {size: 2, name: ''}));
p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));

// Lagrange interpolation through the points
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});

// Line 
var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});

// Derivatives of the curve
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);

// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());

// Construct the point C(ξ)
var r = board.create('glider', [
    () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    graph
], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});

// Tangent to C through C(ξ)
board.create('tangent', [r], {strokeColor: '#ff0000'});
<jsxgraph width="100%" aspect-ratio="3 / 2" title="Extended mean value theorem" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution 4.0 International License.
   https://creativecommons.org/licenses/by/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   const board = JXG.JSXGraph.initBoard(BOARDID, {
       boundingbox: [-5, 10, 7, -6],
       axis: true
   });
   
   // Some initial points
   var p = [];
   p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
   p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
   p.push(board.create('point', [1, 4], {size: 2, name: ''}));
   p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));
   
   // Lagrange interpolation through the points
   var fg = JXG.Math.Numerics.Neville(p);
   var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});
   
   // Line 
   var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});
   
   // Derivatives of the curve
   var df = JXG.Math.Numerics.D(fg[0]);
   var dg = JXG.Math.Numerics.D(fg[1]);
   
   // Usually, the extended mean value theorem is formulated as
   // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
   // We can avoid division by zero with the following formulation:
   var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
   
   // Construct the point C(ξ)
   var r = board.create('glider', [
       () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
       () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
       graph
   ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});
   
   // Tangent to C through C(ξ)
   board.create('tangent', [r], {strokeColor: '#ff0000'});
</jsxgraph>

Extended mean value theorem

Basic calculus
Calculus
Curves
The*'extended mean value theorem* (also called *Cauchy's mean value theorem*) is usually formulated as: Let $$ f, g: [a,b] \to \mathbb{R}$$ be continuous functions that are differentiable in the open interval $(a,b)$. If $g'(x)\neq 0$ for all $x\in(a,b)$, then there exists a value $\xi \in (a,b)$ such that $$ \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}. $$ __Remark:__ It seems to be easier to state the extended mean value theorem in the following form: Let $$f, g: [a,b] \to \mathbb{R}$$ be continuous functions that are differentiable in the open interval $(a,b)$. Then there exists a value $\xi \in (a,b)$ such that $$ f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(a)). $$ This second formulation avoids the need that $g'(x)\neq 0$ for all $x\in(a,b)$ and is therefore much easier to handle numerically. The proof is similar, just use the function $$ h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) $$ and apply *Rolle's theorem*. __Visualization:__ The extended mean value theorem says that given the curve $$C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t))$$ with the above prerequisites for $f$ and $g$, there exists a $\xi$ such that the tangent to the curve in the point $C(\xi)$ is parallel to the line through $C(a)$ and $C(b)$.
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6],
    axis: true
});

// Some initial points
var p = [];
p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'}));
p.push(board.create('point', [-1.5, 5], {size: 2, name: ''}));
p.push(board.create('point', [1, 4], {size: 2, name: ''}));
p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'}));

// Lagrange interpolation through the points
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5});

// Line 
var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1});

// Derivatives of the curve
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);

// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());

// Construct the point C(ξ)
var r = board.create('glider', [
    () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)),
    graph
], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'});

// Tangent to C through C(ξ)
board.create('tangent', [r], {strokeColor: '#ff0000'});

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.