Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Differentiability
Show plain example
QR code
<iframe 
    src="https://www.jsxgraph.org/share/iframe/differentiability" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Differentiability" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        boundingbox: [-5, 10, 7, -6], 
        axis: true,
        showClearTraces: true,
        showFullscreen: true});
    
    // Blue points that define the function graph
    var p = [];
    p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'});
    p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'});
    p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'});
    p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'});
    
    // Lagrange polynomial through blue points
    var pol = JXG.Math.Numerics.lagrangePolynomial(p);
    var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true});
    
    var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4, label: {fontSize:20}});
    var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4, label: {fontSize:20}});
    var fx0 = board.create('point', [function() { return x0.X(); }, function() { return pol(x0.X()); }], {name: '', color: 'grey', fixed: true, size:3});
    var fx = board.create('point', [function() { return x.X(); }, function() { return pol(x.X()); }], {name: '', color: 'grey', fixed: true, size:3});
    // Secant through fx0 and fx
    var line = board.create('line', [fx0, fx],{strokeColor:'#ff0000', dash:2});
    
    // Trace point visualizing f_1
    var f1 = board.create('point', [
            () => x.X(),
            () => (fx.Y() - fx0.Y()) / (fx.X() - fx0.X() + 0.0000001)],
            {size: 1, name: 'f_1', color: 'black', fixed: true, trace: true});
    
    // Print function values of f_1
    var txt = board.create('text', [0.5, 7, 
           () => '( ' + 
                   fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + 
                   ') ) / ( ' + 
                   fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) +
                   ') ) = ' + ((fx.Y() - fx0.Y()) / (fx.X() - fx0.X())).toFixed(3)
        ]);
    
    // Plot derivative
    board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true});
    
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6], 
    axis: true,
    showClearTraces: true,
    showFullscreen: true});

// Blue points that define the function graph
var p = [];
p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'});
p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'});
p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'});
p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'});

// Lagrange polynomial through blue points
var pol = JXG.Math.Numerics.lagrangePolynomial(p);
var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true});

var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4, label: {fontSize:20}});
var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4, label: {fontSize:20}});
var fx0 = board.create('point', [function() { return x0.X(); }, function() { return pol(x0.X()); }], {name: '', color: 'grey', fixed: true, size:3});
var fx = board.create('point', [function() { return x.X(); }, function() { return pol(x.X()); }], {name: '', color: 'grey', fixed: true, size:3});
// Secant through fx0 and fx
var line = board.create('line', [fx0, fx],{strokeColor:'#ff0000', dash:2});

// Trace point visualizing f_1
var f1 = board.create('point', [
        () => x.X(),
        () => (fx.Y() - fx0.Y()) / (fx.X() - fx0.X() + 0.0000001)],
        {size: 1, name: 'f_1', color: 'black', fixed: true, trace: true});

// Print function values of f_1
var txt = board.create('text', [0.5, 7, 
       () => '( ' + 
               fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + 
               ') ) / ( ' + 
               fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) +
               ') ) = ' + ((fx.Y() - fx0.Y()) / (fx.X() - fx0.X())).toFixed(3)
    ]);

// Plot derivative
board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true});
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Differentiability" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution 4.0 International License.
   https://creativecommons.org/licenses/by/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   const board = JXG.JSXGraph.initBoard(BOARDID, {
       boundingbox: [-5, 10, 7, -6], 
       axis: true,
       showClearTraces: true,
       showFullscreen: true});
   
   // Blue points that define the function graph
   var p = [];
   p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'});
   p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'});
   p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'});
   p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'});
   
   // Lagrange polynomial through blue points
   var pol = JXG.Math.Numerics.lagrangePolynomial(p);
   var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true});
   
   var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4, label: {fontSize:20}});
   var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4, label: {fontSize:20}});
   var fx0 = board.create('point', [function() { return x0.X(); }, function() { return pol(x0.X()); }], {name: '', color: 'grey', fixed: true, size:3});
   var fx = board.create('point', [function() { return x.X(); }, function() { return pol(x.X()); }], {name: '', color: 'grey', fixed: true, size:3});
   // Secant through fx0 and fx
   var line = board.create('line', [fx0, fx],{strokeColor:'#ff0000', dash:2});
   
   // Trace point visualizing f_1
   var f1 = board.create('point', [
           () => x.X(),
           () => (fx.Y() - fx0.Y()) / (fx.X() - fx0.X() + 0.0000001)],
           {size: 1, name: 'f_1', color: 'black', fixed: true, trace: true});
   
   // Print function values of f_1
   var txt = board.create('text', [0.5, 7, 
          () => '( ' + 
                  fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + 
                  ') ) / ( ' + 
                  fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) +
                  ') ) = ' + ((fx.Y() - fx0.Y()) / (fx.X() - fx0.X())).toFixed(3)
       ]);
   
   // Plot derivative
   board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true});
   
</jsxgraph>

Differentiability

Basic calculus
Calculus
If the function $f: D \to {\mathbb R}$ is *differentiable* in $x_0\in D$ then there is a function $f_1: D \to {\mathbb R}$ that is continuous in $x_0$ such that $$f(x) = f(x_0) + (x-x_0) f_1(x) \,.$$ This means: $$f_1(x) = \frac{f(x) - f(x_0)}{x-x_0} \,.$$ Drag the point $x$ to see the function $f_1$.
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-5, 10, 7, -6], 
    axis: true,
    showClearTraces: true,
    showFullscreen: true});

// Blue points that define the function graph
var p = [];
p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'});
p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'});
p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'});
p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'});

// Lagrange polynomial through blue points
var pol = JXG.Math.Numerics.lagrangePolynomial(p);
var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true});

var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4, label: {fontSize:20}});
var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4, label: {fontSize:20}});
var fx0 = board.create('point', [function() { return x0.X(); }, function() { return pol(x0.X()); }], {name: '', color: 'grey', fixed: true, size:3});
var fx = board.create('point', [function() { return x.X(); }, function() { return pol(x.X()); }], {name: '', color: 'grey', fixed: true, size:3});
// Secant through fx0 and fx
var line = board.create('line', [fx0, fx],{strokeColor:'#ff0000', dash:2});

// Trace point visualizing f_1
var f1 = board.create('point', [
        () => x.X(),
        () => (fx.Y() - fx0.Y()) / (fx.X() - fx0.X() + 0.0000001)],
        {size: 1, name: 'f_1', color: 'black', fixed: true, trace: true});

// Print function values of f_1
var txt = board.create('text', [0.5, 7, 
       () => '( ' + 
               fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + 
               ') ) / ( ' + 
               fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) +
               ') ) = ' + ((fx.Y() - fx0.Y()) / (fx.X() - fx0.X())).toFixed(3)
    ]);

// Plot derivative
board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true});

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.