Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

3D function graph with tangent plane II
Show plain example
QR code
<iframe 
    src="https://www.jsxgraph.org/share/iframe/3d-function-graph-with-tangent-plane-ii" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: 3D function graph with tangent plane II" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution ShareAlike 4.0 International License.
    https://creativecommons.org/licenses/by-sa/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    var board = JXG.JSXGraph.initBoard(BOARDID, {
        boundingbox: [-10, 10, 10, -10],
        axis: false,
        pan: { enabled: false },
        zoom: { enabled: false }
    });
    var box = [-2, 2],
        view = board.create('view3d', [[-6, -3], [8, 8], [box, box, box]], {
            xPlaneRear: { visible: false },
            yPlaneRear: { visible: false }
        });
    
    // Define the 3D function graph
    var F_txt = 'cos(2 * x) * cos(3 * y)';
    var F = board.jc.snippet(F_txt, true, 'x,y');
    
    // Partial derivatives, computed symbolically
    var Fdx_txt = 'D(cos(2 * x) * cos(3 * y), x)';
    var Fdy_txt = 'D(cos(2 * x) * cos(3 * y), y)';
    var Fdx = board.jc.snippet(Fdx_txt, true, 'x,y');
    var Fdy = board.jc.snippet(Fdy_txt, true, 'x,y');
    
    // 3D function graph
    var c = view.create("functiongraph3d", [F, box, box], { strokeWidth: .5, stepU: 70, stepsV: 70 });
    
    // The two points
    var Axy = view.create("point3d", [1, 1, -2], { withLabel: false }),
        A = view.create("point3d", [function() { return [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] }], {
            withLabel: false,
            fixed: true
        });
    view.create("line3d", [Axy, A], { dash: 1 });
    
    // Determine tangent vectors
    var dFx = () => Fdx(A.X(), A.Y()),
        dFy = () => Fdy(A.X(), A.Y()),
        dFx_norm = () => Math.sqrt(1 + Fdx(A.X(), A.Y()) ** 2),
        dFy_norm = () => Math.sqrt(1 + Fdy(A.X(), A.Y()) ** 2),
        dFx1 = () => 1 / dFx_norm(),
        dFx2 = () => Fdx(A.X(), A.Y()) / dFx_norm(),
        dFy1 = () => 1 / dFy_norm(),
        dFy2 = () => Fdy(A.X(), A.Y()) / dFy_norm(),
        dFx_vec = [dFx1, 0, dFx2],
        dFy_vec = [0, dFy1, dFy2],
    
        // Tangent plane
        plane1 = view.create("plane3d", [A, dFx_vec, dFy_vec, [-.5, .5], [-.5, .5]], { fillOpacity: .8, fillColor: "red" }),
        // Tangent vectors of length 1
        a = view.create("line3d", [A, dFx_vec, [0, 1]]),
        b = view.create("line3d", [A, dFy_vec, [0, 1]]);
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

var board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-10, 10, 10, -10],
    axis: false,
    pan: { enabled: false },
    zoom: { enabled: false }
});
var box = [-2, 2],
    view = board.create('view3d', [[-6, -3], [8, 8], [box, box, box]], {
        xPlaneRear: { visible: false },
        yPlaneRear: { visible: false }
    });

// Define the 3D function graph
var F_txt = 'cos(2 * x) * cos(3 * y)';
var F = board.jc.snippet(F_txt, true, 'x,y');

// Partial derivatives, computed symbolically
var Fdx_txt = 'D(cos(2 * x) * cos(3 * y), x)';
var Fdy_txt = 'D(cos(2 * x) * cos(3 * y), y)';
var Fdx = board.jc.snippet(Fdx_txt, true, 'x,y');
var Fdy = board.jc.snippet(Fdy_txt, true, 'x,y');

// 3D function graph
var c = view.create("functiongraph3d", [F, box, box], { strokeWidth: .5, stepU: 70, stepsV: 70 });

// The two points
var Axy = view.create("point3d", [1, 1, -2], { withLabel: false }),
    A = view.create("point3d", [function() { return [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] }], {
        withLabel: false,
        fixed: true
    });
view.create("line3d", [Axy, A], { dash: 1 });

// Determine tangent vectors
var dFx = () => Fdx(A.X(), A.Y()),
    dFy = () => Fdy(A.X(), A.Y()),
    dFx_norm = () => Math.sqrt(1 + Fdx(A.X(), A.Y()) ** 2),
    dFy_norm = () => Math.sqrt(1 + Fdy(A.X(), A.Y()) ** 2),
    dFx1 = () => 1 / dFx_norm(),
    dFx2 = () => Fdx(A.X(), A.Y()) / dFx_norm(),
    dFy1 = () => 1 / dFy_norm(),
    dFy2 = () => Fdy(A.X(), A.Y()) / dFy_norm(),
    dFx_vec = [dFx1, 0, dFx2],
    dFy_vec = [0, dFy1, dFy2],

    // Tangent plane
    plane1 = view.create("plane3d", [A, dFx_vec, dFy_vec, [-.5, .5], [-.5, .5]], { fillOpacity: .8, fillColor: "red" }),
    // Tangent vectors of length 1
    a = view.create("line3d", [A, dFx_vec, [0, 1]]),
    b = view.create("line3d", [A, dFy_vec, [0, 1]]);
<jsxgraph width="100%" aspect-ratio="1 / 1" title="3D function graph with tangent plane II" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution ShareAlike 4.0 International License.
   https://creativecommons.org/licenses/by-sa/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   var board = JXG.JSXGraph.initBoard(BOARDID, {
       boundingbox: [-10, 10, 10, -10],
       axis: false,
       pan: { enabled: false },
       zoom: { enabled: false }
   });
   var box = [-2, 2],
       view = board.create('view3d', [[-6, -3], [8, 8], [box, box, box]], {
           xPlaneRear: { visible: false },
           yPlaneRear: { visible: false }
       });
   
   // Define the 3D function graph
   var F_txt = 'cos(2 * x) * cos(3 * y)';
   var F = board.jc.snippet(F_txt, true, 'x,y');
   
   // Partial derivatives, computed symbolically
   var Fdx_txt = 'D(cos(2 * x) * cos(3 * y), x)';
   var Fdy_txt = 'D(cos(2 * x) * cos(3 * y), y)';
   var Fdx = board.jc.snippet(Fdx_txt, true, 'x,y');
   var Fdy = board.jc.snippet(Fdy_txt, true, 'x,y');
   
   // 3D function graph
   var c = view.create("functiongraph3d", [F, box, box], { strokeWidth: .5, stepU: 70, stepsV: 70 });
   
   // The two points
   var Axy = view.create("point3d", [1, 1, -2], { withLabel: false }),
       A = view.create("point3d", [function() { return [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] }], {
           withLabel: false,
           fixed: true
       });
   view.create("line3d", [Axy, A], { dash: 1 });
   
   // Determine tangent vectors
   var dFx = () => Fdx(A.X(), A.Y()),
       dFy = () => Fdy(A.X(), A.Y()),
       dFx_norm = () => Math.sqrt(1 + Fdx(A.X(), A.Y()) ** 2),
       dFy_norm = () => Math.sqrt(1 + Fdy(A.X(), A.Y()) ** 2),
       dFx1 = () => 1 / dFx_norm(),
       dFx2 = () => Fdx(A.X(), A.Y()) / dFx_norm(),
       dFy1 = () => 1 / dFy_norm(),
       dFy2 = () => Fdy(A.X(), A.Y()) / dFy_norm(),
       dFx_vec = [dFx1, 0, dFx2],
       dFy_vec = [0, dFy1, dFy2],
   
       // Tangent plane
       plane1 = view.create("plane3d", [A, dFx_vec, dFy_vec, [-.5, .5], [-.5, .5]], { fillOpacity: .8, fillColor: "red" }),
       // Tangent vectors of length 1
       a = view.create("line3d", [A, dFx_vec, [0, 1]]),
       b = view.create("line3d", [A, dFy_vec, [0, 1]]);
</jsxgraph>

3D function graph with tangent plane II

3D
Calculus
Function plotting
Given a 3D function graph and a point $A$, display the tangent plane and tangent vectors in $A$.
// Define the id of your board in BOARDID

var board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-10, 10, 10, -10],
    axis: false,
    pan: { enabled: false },
    zoom: { enabled: false }
});
var box = [-2, 2],
    view = board.create('view3d', [[-6, -3], [8, 8], [box, box, box]], {
        xPlaneRear: { visible: false },
        yPlaneRear: { visible: false }
    });

// Define the 3D function graph
var F_txt = 'cos(2 * x) * cos(3 * y)';
var F = board.jc.snippet(F_txt, true, 'x,y');

// Partial derivatives, computed symbolically
var Fdx_txt = 'D(cos(2 * x) * cos(3 * y), x)';
var Fdy_txt = 'D(cos(2 * x) * cos(3 * y), y)';
var Fdx = board.jc.snippet(Fdx_txt, true, 'x,y');
var Fdy = board.jc.snippet(Fdy_txt, true, 'x,y');

// 3D function graph
var c = view.create("functiongraph3d", [F, box, box], { strokeWidth: .5, stepU: 70, stepsV: 70 });

// The two points
var Axy = view.create("point3d", [1, 1, -2], { withLabel: false }),
    A = view.create("point3d", [function() { return [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] }], {
        withLabel: false,
        fixed: true
    });
view.create("line3d", [Axy, A], { dash: 1 });

// Determine tangent vectors
var dFx = () => Fdx(A.X(), A.Y()),
    dFy = () => Fdy(A.X(), A.Y()),
    dFx_norm = () => Math.sqrt(1 + Fdx(A.X(), A.Y()) ** 2),
    dFy_norm = () => Math.sqrt(1 + Fdy(A.X(), A.Y()) ** 2),
    dFx1 = () => 1 / dFx_norm(),
    dFx2 = () => Fdx(A.X(), A.Y()) / dFx_norm(),
    dFy1 = () => 1 / dFy_norm(),
    dFy2 = () => Fdy(A.X(), A.Y()) / dFy_norm(),
    dFx_vec = [dFx1, 0, dFx2],
    dFy_vec = [0, dFy1, dFy2],

    // Tangent plane
    plane1 = view.create("plane3d", [A, dFx_vec, dFy_vec, [-.5, .5], [-.5, .5]], { fillOpacity: .8, fillColor: "red" }),
    // Tangent vectors of length 1
    a = view.create("line3d", [A, dFx_vec, [0, 1]]),
    b = view.create("line3d", [A, dFy_vec, [0, 1]]);

license

This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.